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Abstract—Floods are among the most frequently occurring and
disastrous natural hazards in the world. The overarching goal
of this study is to investigate the utility of passive microwave
AMSR-E signal and TRMM based precipitation estimates in
improving flood prediction at the sparsely gauged Cubango River
Basin, Africa. This is accomplished by coupling a widely used
conceptual rainfall-runoff hydrological model with Ensemble
Square Root Filter (EnSRF) to account for uncertainty in both
forcing data and model initial conditions. Three experiments
were designed to quantify the contributions of the AMSR-E
signal to the flood prediction accuracy, in comparison to the
benchmark assimilation of in-situ streamflow observations, for
both “Open Loop” and “Assimilation” modules. In general, the
EnSRF assimilation of both in-situ observations and AMSR-E
signal-converted-streamflow effectively improved streamflow
modeling performance in terms of three statistical measures. In
order to further investigate AMSR-E signals’ contribution to
extreme events prediction skill, the upper 10th percentile daily
streamflow was taken as the threshold. Results show significantly
improved skill and detectability of floods as well as reduced false
alarm rates. Given the global availability of satellite-based pre-
cipitation from current TRMM and future GPM, together with
soil moisture information from the current AMSR-E and future
SMAP mission at near real-time, this “first attempt” study at a
sparsely gauged African basin shows that opportunities exist for
an integrated application of a suite of satellite data in improving
flood forecasting worldwide by careful fusion of remote sensing
and in-situ observations.
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I. INTRODUCTION

E VERY year there are hundreds and thousands of flood
events around the world that cause significant human suf-

fering, loss of life and property damage [1]–[3]. In a changing
climate, it is reasonably anticipated that the flood risk will not
decrease but become more severe and frequent, thus threatening
more regions around the world [4]. Therefore, accurate and pre-
cise forecasting of floods plays an increasingly important role
in early warning systems to protect life and property.
In order to provide early warnings of impending disasters,

hydrological models are typically applied for flood detection
and prediction. The traditional way to improve the accuracy of
streamflow simulation and prediction is to calibrate the model
using manual or automatic approaches such as such as SLS
(Stepwise Line Search) [5], SCE-UA (Shuffling Complex Evo-
lution-University of Arizona) [6], and DREAM (DiffeRential
Evolution Adaptive Metropolis) [7]. In addition to conventional
calibration approaches, data assimilation can further improve
the accuracy and precision of the modeling results by correcting
the internal model states that are used as the initial condition of
the forecast for the next time steps via assimilating available and
reliable observations.
Ensemble data assimilation was first used in engineering

and aerospace applications dating back to the 1960s. In recent
decades, ensemble data assimilation has increasingly been ex-
panded to many fields, especially meteorology, oceanography
and hydrology. Data assimilation is defined as the insertion of
reliable data into the dynamical model to improve the quality
and accuracy of the estimates [8]. The Ensemble Kalman Filter
(EnKF), which is a promising approach as it is robust and
flexible in calculating background covariance [9], has broadly
been applied in the research area of dynamic meteorology as
well as numerical prediction [10]–[20]. Results show great
potential of EnKF in enhancing modeling performance thus
providing more reliable forecasts.
An increasing number of studies have been exploiting the po-

tential to assimilate different types of hydrological observations
by integrating EnKF with advanced hydrological models. One
focus has been on the optimal use of soil moisture data with the
EnKF (e.g., [21]–[26]). By assimilating soil moisture into an ap-
propriately physically basedmodel (either land surfacemodel or
hydrological model), better estimates of antecedent soil mois-
ture condition result can be generated, thus enhancing the hy-
drologic prognostic capability of soil and streamflow states and
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fluxes. However, the degree of improvement in forecast skill
is contingent on the model structure and the quality of the ob-
served data that are assimilated into the model. Chen et al. [26]
pointed out that the failed attempt to improve streamflow pre-
diction via assimilating soil moisture into the SWOTmodel was
due to the deficiency of the model structure. A variety of studies
have examined the applicability of assimilating streamflow ob-
servations into hydrological models in order to improve stream-
flow prediction and soil moisture conditions (e.g., [22], [27],
[28]).
In addition to calibration and data assimilation techniques,

the recent development of remote-sensing technology, which
provides high temporal and spatial resolution forcing data such
as precipitation and soil moisture, can greatly facilitate the im-
provement of flood forecasting [29]–[31]. However, it is recog-
nized that the uncertainty with remote sensing data may cause
additional errors to be propagated into hydrologic modeling re-
sults. For example, the TRMM (Tropical Rainfall Measurement
Mission) – 3B42 RT forcing data used in this study, according to
[32], [33], can lead to biased streamflow simulations through the
error propagation from the model input to the model output in
different basins. The commonly used batch calibration system
for hydrologic analysis combines errors from input data and
model structures into parameter uncertainties; sequential data
assimilation has the potential to overcome this weakness by
taking into account each source of uncertainty separately [34].
NASA AMSR-E (Advanced Microwave Scanning Ra-

diometer for Earth observing system)/Aqua provides both soil
moisture retrievals from the brightness temperature and the
approximated river streamflow signals using the techniques
proposed by Brakenridge et al. [31]. To date, however, pre-
vious assimilation studies with AMSR-E information are only
focused on the soil moisture products but not on the remotely
sensed streamflow signal. The overarching goal of this study is
to investigate the potential utility of AMSR-E remotely-sensed
signal data for hydrological model calibration and data assim-
ilation in the Cubango River Basin, with rainfall forcing from
TRMM-based satellite precipitation estimates. To do so, an
ensemble square root filter (EnSRF), (also referred to as an
EnKF without perturbing the observations) was applied and
coupled with a widely tested rainfall-runoff hydrological model
called HyMOD to overcome both the uncertainty of remotely
sensed precipitation and streamflow data combined with the
simplicity of the model structure.
To the best of our knowledge, this research is the first attempt

to incorporate remotely-sensed streamflow, which was derived
from the AMSR-E signals retrieved and provided by the Global
Flood Detection System (GFDS, http://www.gdacs.org/flood-
detection/), for hydrologic model parameter estimation and data
assimilation. This study demonstrates the applicability of the
globally-available AMSR-E signals and satellite-based precip-
itation estimates in enhancing the hydrologic performance via
a combined calibration and data assimilation approach. It is
shown that the assimilation of either gauge-observed or remote
sensing-derived streamflow into the model updates all the in-
ternal model states (soil moisture content, quick and slow flow
tank contents) with the expectation of thereby reducing the devi-
ations between the model simulation and observation of stream-

flow. With the increasing availability of remote-sensing data
over the globe (e.g., precipitation and soil moisture) and ad-
vances in computational power, it is possible that sequential data
assimilation of remotely-sensed soil moisture and streamflow
signals can be implemented in a real-time hydrological predic-
tion system for improved hydrological forecasting, especially
for the vast basins of the world that are only sparsely gauged.
Section II describes the Cubango river basin and the details of

the model and data sources. Section III introduces the method-
ology of this study. In Section IV, the results of sensitivity anal-
ysis, calibration, data assimilation and threshold-based evalua-
tion are discussed. Finally, a summary of results and conclusions
are provided in Section V.

II. STUDY REGION, MODEL AND DATA

A. Study Region

The Okavango River, which is the fourth longest river system
in southern Africa, runs for about 1100 km from central Angola
and flows through Namibia and Botswana (as shown in Fig. 1).
The Okavango catchment is approximately 413,000 , while
the Okavango delta which lies downstream is about 15,000

. Within the area of this catchment, Angola accounts for
48%, Nambia accounts for 37% and Botswana 15% of the
land area. The Okavango river originates in the headwaters
of central Angola, then the Cubango and Cuito tributaries
meet to form the Cubango-Okavango River near the border
of Angola and Namibia and flow into the Okavango Delta
in Botswana. The upper stream region belongs to subtropical
climate zone with annual precipitation around 1300 mm while
the downstream region, which contains the Kalahari Desert,
belongs to the semi-arid climate zone with annual precipitation
around 450 mm [35], [36]. The headwater region, which is the
northern part of the basin, is mainly covered by the ferralsols
soil with a lower hydraulic conductivity. The headwater region
also has a high forest cover and contributes significantly to
the river runoff [36]. The rest of the basin is dominated by
arenosals soil (www.sharing-water.net), which is very porous
with high hydraulic conductivity, so that water drains rapidly,
leaving little moisture for plants. As mentioned in [36], around
95% of inflow is lost in the atmosphere due to high potential
evapotranspiration rate and only a small portion contributes to
groundwater.
Several studies in the Okavango River Basin have in-

vestigated the hydrological response under climate change
[36]–[40]. Since the Okavango River basin is one of the most
important economic and water resources in southern Africa,
additional studies have been solicited to assist in the deci-
sion-making for water management in this basin. The main
tributary of Okavango River, the Cubango River, which is
mainly located in Angola, is selected as the study basin. Fig. 1
shows the location of the Cubango River in southwest Africa,
which accounts for a majority of the available water resources
in the Okavango river. The Rundu gauge station is located at
the outlet of Cubango River, a location where both the ground
gauge-based streamflow observation and the remote-sensing
discharge estimates (i.e., AMSR-E M/C ratio signal) are avail-
able.
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Fig. 1. Map of research region – Cubango River Basin, South Africa.
(a) African; (b) Southern Part of Africa; (c) Cubango River.

TABLE I
PARAMETER RANGE OF HYMOD [43]

B. Model

To concentrate on the effectiveness of the Ensemble Square
Root Filter, the conceptually simple Hydrological MODel
(HyMOD) described in [42] was utilized. This model com-
monly consists of several quick flow reservoirs and one single
reservoir for slow flow; the quick flow reservoirs and the slow
flow reservoir operate in parallel as routing components. The
parameters of HyMOD and their reasonable ranges are as
shown in Table I [42]: (1) : maximum storage capability
in the catchment; (2) : the degree of spatial variability of the
soil moisture capacity within the catchment; (3) : quick-slow
split parameter; (4) : number of quick flow routing tanks;
(5) : quick flow routing tanks rate parameter; and (6)
: slow flow routing tanks rate parameter. The internal states
are (1) : soil moisture accounting tank state contents; (2)
: quickflow routing tanks state contents with dimension

of ; and (3) : slowflow routing tank state contents.
Following evaporation, the remaining rainfall is used to fill the
soil moisture storage and then the excess rainfall splits into
quickflow reservoir and slowflow reservoir by the quick-slow
split parameter . The flow in each reservoir is governed by
quick flow routing tanks rate parameter and slow flow
routing tanks rate parameter [43], [44]. In summary, the
input variables should consist of the precipitation and the
Potential Evapotranspiration , while the main output
variable is the streamflow .

C. Data

With the development of remote-sensing techniques, the
application to distributed hydrologic modeling especially in
sparse or even ungauged basins has dramatically improved. Re-
mote-sensing data with higher spatial and temporal resolution
can provide information over the globe with less cost and less
manual maintenance involved. These data can be used as the
forcing data (e.g., precipitation, potential evapotranspiration)
to drive the hydrologic models and to calibrate the parameters
as well, thus enabling the flood forecasts and water resources
management tools in most of the developing countries where
conventional ground-based measurements are scarce. The Oka-
vango River Basin is considered to be poorly gauged. Sparse
ground gauge-based precipitation measurements are available
in the Cubango sub-basin where most runoff is generated [45].
In this study, remotely-sensed precipitation and potential evap-
otranspiration are incorporated to drive the model while both
the gauge measurement and the remotely-sensed estimation of
streamflow are adopted to calibrate the model.
TRMM Multisatellite Precipitation Analysis (TMPA) pro-

vides two standard 3B42-level products: the near-real-time
3B42 RT which uses the TRMM combined instrument dataset
to calibrate the data and the post-real-time research product
3B42 V7 (level 7) which adjusts the rainfall accumulation by
gauge analysis [46]. Both 3B42 RT and 3B42 V6 products
are quasi-global with coverage from 50 to 50 latitude. In
this study, the TRMM 3B42 RT with the spatial resolution of
0.25 (approximate to 25 km in the tropical area) and temporal
resolution of three hourly, is processed into daily accumulation
as well as basin average and applied as the forcing data to
drive the hydrological model. PET (potential evapotranspira-
tion) comes from the Famine Early Warning System Network
(FEWS NET; http://igskmncnwb015.cr.usgs.gov/Global/) with
a spatial resolution of 0.25 , and is likewise processed into
daily and basin average as additional forcing to the model.
For the benchmarks that were used to calibrate the model,

both the ground gauge-observed streamflow from the local
government and the AMSR-E signal converted streamflow
were applied in this study. Dartmouth Flood Observatory
(DFO, http://www.dartmouth.edu/~floods/), as well as GFDS,
uses the AMSR-E sensor for discharge estimation in global
scope for flood monitoring. Besides these two systems, other
studies also explore the possibility of estimating the discharge
based on the AMSR-E sensors [47]–[49]. This study uses the
conventional Dartmouth algorithm [31], a polynomial model
(refer to part 3.2), to retrieve the actual streamflow (in )
from the AMSR-E radiance ratio.

III. METHODOLOGY

A. Streamflow Estimation From AMSR-E Signals

The GFDS uses the near real-time satellite-based, remote-
sensing data to monitor floods over the globe. In this system,
a passive microwave sensor, AMSR-E, together with TRMM
TMI (TRMM Microwave Imager) sensor, are used to measure
the brightness temperature at 36.5 GHz, descending orbit with
horizontal polarization, which responds to surface wetness and
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Fig. 2. Time series plot of radiance ratio and observed streamflow from Jun-22-2002 to Dec 31-2007.

thus flooding [31]. It should be noted that though AMSR-E-po-
larized measures the brightness temperature (also expressed as
radiance) both horizontally and vertically at 6 frequencies from
6.9 to 89.0 GHz, only 36.5 GHz at horizontal polarization is se-
lected to measure the change of river discharge through a series
of sensitivity tests [31]. A wet pixel (usually over the surface of
a river) is selected to measure the brightness temperature of the
measurement ( ) area while an adjacent dry pixel is selected to
measure the brightness temperature of the calibration ( ) area
(usually over the land near the wet pixel); the fraction of the
measurement and calibration brightness temperature is referred
as the ratio signal ((1)).

(1)

The ratio signal data are provided by GFDS. Some de-
tails about selecting the pixels should be noted: (1) The
calibrated dry pixel is located near the measurement wet pixel
so that changes such as vegetation, soil texture, etc. at those

locations are more likely to be correlated. In other words, those
two locations are more likely to share similar conditions (e.g.,
vegetation, and soil texture); (2) and are within a short
distance so that the measurement acquired by AMSR-E are ef-
fectively contemporaneous; (3) is selected to have the largest
change in water surface area and relatively high sensitivity; (4)
is selected to be close to but is located far enough to be not

affected by flood inundation; (5) Moderate Resolution Imaging
Spectroradiometer (MODIS) is applied to assist selecting
where flow area expansions occur [1], [31]. The main merit
of the AMSR-E passive microwave sensor onboard the NASA
EOS Aqua satellite is that it is not restricted by cloud cover and
provides data availability for daily flood monitoring over the
globe. In addition, since nighttime radiation is more stable than
during the day, the descending (nightly) orbit with a footprint
size of approximately 8 12 km is used. For additional details,
refer to [1, Fig. 3.] which illustrates how the AMSR-E sensor
can be used to detect flooding.
The radiance ratio, which is the reciprocal of ratio

signal, is correlated at a significant level with observed stream-

flow as shown in Fig. 2. The relationship can also be visual-
ized by the scatter plot shown in Fig. 3. Here, the observed
streamflow is used to calibrate the orbital gauging measure-
ments (the radiance ratio signal) into in-situ discharge
units ( ) via a quadratic polynomial regression as shown
in Fig. 3. Some other regressions were also tested in this study
but not listed in this paper; it turns out the nonlinear quadratic
polynomial regression outperformed the linear regression and
other polynomial regressions. This arithmetic “pair ratio” (
radiance ratio as shown in (1)) approach proposed by Braken-
ridge, accounts for the inherent correlated changes between the
brightness temperature ratio and river gauge data [31]. Braken-
ridge also demonstrated that AMSR-E data, calibrated via the
paired measurement approach, and obtained over carefully se-
lected river reaches, can characterize river discharge changes at
a useful level of accuracy [31]. It should be noted that the param-
eters of the quadratic polynomial equation as shown in Fig. 3
are calibrated using both the gauge streamflow and AMSR-E
signals data sets from 22 Jun 2002 to 31 Dec 2005. Following
conversion, the correlation coefficient between the signal-con-
verted streamflow and the observed streamflow is 0.95, the Bias
is 1.91% and the RMSE (Root Mean Square Error) is 56.64

during this period [note: capitalized “Bias” in this paper
refers to the statistical index that is calculated by (17)].
The datasets from 1 Jan 2006 to 31 Dec 2007 are applied to

validate the performance of this regression method. Fig. 4 in-
dicates that the signal-converted streamflow is well correlated
with gauge observations from 2002 to 2007, especially during
the peak flow periods. However, overestimation of streamflow
exists during the low flow period because the AMSR-E sen-
sors are not sensitive to low flows. In addition, this approach
is applied to medium- to large-sized basins. The accuracy of the
AMSR-E signals for basins with less than 50000 drainage
areas needs further investigation [50]. Additional factors influ-
encing the utility of AMSR-E data for streamflow estimation
include the width of the river, channel geometry, water temper-
ature relative to land, and measurement pixel resolution.
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Fig. 3. Scatter plot and rating curve equation comparing daily radiance ratio versus gauge based streamflows (In the equation, refer to runoff /streamflow
and refer to signal).

Fig. 4. Observed streamflow V.S. signal converted streamflow from Jun-22-2002 to Dec 31-2005.

B. Model Calibration and Validation

There are two general approaches for hydrologic model
calibration: manual calibration and automatic calibration. The
manual calibration approach, which is also expressed as “expert
calibration”, is largely based on the experience of the modeler.
In contrast, the automatic calibration approach, which is largely
dependent on the computational power and the efficiency of the
algorithm, has been widely applied in hydrological calibration
and it is often regarded as a quicker solution for arriving at a
useful, calibrated model [41].
In this study, an automatic parameter estimation method

called DREAM (Differential Evolution Adaptive Metropolis)
developed by Vrugt [7], was applied to calibrate all the six
parameters of HyMOD using gauge observations (in ex-
periment 1&2 as described in Section III.D) and AMSR-E
signal converted streamflow (in experiment 3 as described
in Section III.D), respectively. DREAM, uses a sophisticated
method to estimate the posterior probability density function
in complex, high–dimensional sampling problems and resulted
in a successful calibration of the HyMOD model parameters.

From the authors’ experience, the sensitivities of the param-
eters which controls the quantity of excess rainfall and
the routing parameter which controls the residence time
of quick-flow are relatively higher, then followed by ,
and . From the previous experiences [42]–[44], the number
of quick-flow tanks is somewhat sensitive but usually the
recommended best value is three for small- to medium-sized
basins.
The time series of the precipitation, PET, gauge streamflow

observation, and AMSR-E signal are from 22 Jun 2002 (the
starting date of the AMSR-E data) to 31Dec 2007 due to the data
availability. The calibration period spans 2003 to 2005, and the
validation period is from 2006 to 2007. For each experiment,
a warm-up period from 22 Jun 2002 to 31 Dec 2002 was run
ahead of each experiment to initialize the internal model states.

C. Data Assimilation Approach: EnSRF

A sequential data assimilation technique called Ensemble
Square Root Filter (EnSRF), which is also referred to as EnKF
without perturbing observations, is applied to assimilate dif-
ferent streamflow observations into HyMOD. Compared to
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the traditional EnKF which requires perturbing both forcing
data and observations, for the EnSRF, only the forcing data is
perturbed and the ensemble mean is updated by the observation.
Whitaker and Hamill demonstrated that there is no additional
computational cost by EnSRF relative to EnKF, and EnSRF
performs more accurately than EnKF for the same ensemble
size [51]. But it still remains a research topic to compare the
accuracy and efficiency of different sequential data assimilation
approaches (e.g., EnKF, EnSRF).
Let be the background model forecast, which is also

called the first guess in data assimilation ( 1 dimension
and is the number of emsembles); let be the observation
( 1 dimension and is the number of observations), which
is the streamflow measurements in this study; let be the
observation operator that converts the states in the model
into observation space ( dimension); the estimate of the
analyzed state can be described by the traditional Kalman
filter update function [51] ( 1 dimension),

(2)

In (2), refers to the traditional Kalman gain. Let’s denote
the ensemble as

(3)

Where we ignore time index and the subscript represents the
ensemble member. The ensemble mean is then defined as

(4)

The perturbation from the mean for the th member is

(5)

Then is defined as a matrix formed from the ensemble of
perturbations:

(6)

An estimation of background error covariance is defined as

(7)

However, in practice, we do not calculate , but rather cal-
culate and are evaluated by the following equa-
tions In order to estimate the Kalman gain ::

(8)

(9)

Here, is the ensemble size. Then the traditional Kalman
gain can be calculated by (10),

(10)

is the observation error covariance with a dimension of
. In EnSRF, the reducedKalman gain is used to update the

deviation from the ensemble mean as estimated by the following
equation,

(11)

The ensemble mean can be updated by

(12)

The perturbation (deviation of ensemble mean) can be up-
dated by

(13)

The final analysis follows as

(14)

As mentioned above, when the EnSRF is applied, the forcing
data (which is the precipitation in this study) needs to be per-
turbed. Precipitation perturbations in this study are defined as

(15)

where is a random noise factor drawn from a Gaussian dis-
tribution

(16)

Since this study utilizes a lumped model HyMOD, the satel-
lite-derived precipitation is aggregated into a basin average at
every time step as the forcing input of the model, so no spa-
tial error correlation is computed in the generation of the pre-
cipitation perturbation due to the feature of the lumped model.
Regarding the temporal error correlations, the equation does not
directly account for the temporal error correlations. At each time
step, an independent rainfall error is generated by Gaussian dis-
tribution (refer to (15) and (16)) and added to the original basin
average precipitation.

D. Experimental Design

The primary forcing datasets for the Cubango River basin
come from the TRMM RT remote-sensing product and the
potential evapotranspiration data from FEWS (http://igskm-
ncnwb015.cr.usgs.gov/Global). Three experiments were per-
formed for testing the efficiency of improving the streamflow
simulations by assimilating different sources of observations.
First, rainfall and runoff observations from June 2002 to
December 2005 were used to calibrate the model parameters
without data assimilation following the warm-up period. Then,
both the gauge-based streamflow observation and the AMSR-E
signal converted streamflow were assimilated separately into
HyMOD to update all the internal states at each assimilation
cycle, which is daily in this study for both calibration and vali-
dation period. The modeling results of these three experiments
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TABLE II
INTRODUCTION OF EXPERIMENTS DESIGN.

are evaluated by the gauge-observed streamflow, which is al-
ways considered as the most accurate and reliable observation
of streamflow.
In the first experiment, themodel was calibrated by the gauge-

observed streamflow and then the gauge observation was also
assimilated into HyMOD to estimate the internal model states.
This experiment is the benchmark for all experiments, which
are summarized in Table II. In the second experiment, the model
was similarly calibrated using the gauge-observed streamflow;
however, in the assimilation step, the AMSR-E signal converted
streamflow was incorporated into HyMOD in lieu of the gauge-
observed streamflow data assimilated in experiment 1.
In the third experiment, the model was calibrated by the

AMSR-E signal converted streamflow and then it was also
assimilated into model to correct the model states for each
assimilation cycle, without gauge-based observations involved.

E. Sensitivity Analysis

Research has been carried out in the sensitivity analysis
among the spread of precipitation ensembles, observation error,
ensemble size, and their impacts on data assimilation efficiency
[27], [51]. Here, the “spread of the precipitation” is the white
noise that is added into the precipitation to generate the pre-
cipitation ensembles. In other words, it is a measure of the
difference between the precipitation ensemble members and is
represented by the standard deviation (e.g., the parameter is
(11)). Pauwels et al. [27] analyzed the sensitivity of observation
error; results show that the increase in the observation error
leads to a decrease in the accuracy of the modeled discharge.
Whitaker et al. [51] pointed out that with the enlargement of
the ensemble size the modeled result improved up to a point
where the modeled result remained the same. Those two studies
mentioned above only analyzed the sensitivity of a single
factor (e.g., observation error and ensemble size) affected in the
effectiveness of data assimilation. Actually, the effectiveness
of EnSRF, which can be evaluated by an NSCE (Nash-Sutcliffe
Coefficient of Efficiency) statistic, should be a function of
several factors (i.e., observation errors, spread of precipitation
and ensemble size). In this study, a joint sensitivity analysis
has been carried out to evaluate the mutual impacts of various
observation errors, spread of precipitation and ensemble sizes
for assimilating different sources of streamflow observations.
Finally an optimal and reasonable point (with certain observa-
tion error, spread of precipitation and ensemble size) that yields
the best simulation results when applying EnSRF will be iden-
tified and then utilized in the data assimilation experiments. It
should be noted that the sensitivity analysis is applied after the

model calibration step to avoid the bias in the model, and the
sensitivity analysis is only applied for the calibration period.

F. Evaluation Metrics

In this study, three commonly used statistical indicators were
used to assess the long time series model performance with
and without the EnSRF data assimilation technique. Bias Ratio
quantifies the difference between the simulated streamflow and
the observed streamflow as described by the following equation:

(17)

In (12)–(14), is the observed streamflow and is the sim-
ulated streamflow. Normalized Root Mean Square Error is used
to measure random errors as follows:

(18)

For both Bias and RMSE, the smaller their values are (i.e.,
closest to 0), the better the model result is. Small values of Bias
and RMSE signify the modeling results are close to the corre-
sponding observations in regards to systematic bias and random
errors.
NSCE is a frequently used statistic to quantify the agreement

between the model simulation and the ground observation. The
perfect value of NSCE is 1. If the value of the NSCE is below 0,
it indicates that the mean of the observation is a better predictor
than the model.

(19)

In order to further evaluate the performance of EnSRF-cou-
pled-HyMOD in flood detection during the peak flow period, a
high flow threshold is defined as the top 10% daily streamflow
quantile, and the categorical verification statistics of Probability
of Detection (POD), False Alarm Ratio (FAR), Critical Success
Index (CSI) and Equitable Threat Score (ETS) are used to eval-
uate the correspondence between the simulated and observed
runoff above the high flow threshold. For specific descriptions
of POD, FAR, CSI and ETS, please refer to Appendix.

IV. RESULTS

A. Sensitivity Analysis of the Ensemble Size, Observation
Error and Spread of Precipitation

As shown by Fig. 5, observation errors of 5%, 8%, 10%,
13%, 15%, 18%, and 20%, spreads of precipitation of

, and 2.00, and ensemble sizes of
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Fig. 5. Sensitivity analysis regarding observation error spread of precipitation,
and ensemble size taking NSCE as the evaluation index. (a) Experiment 1; (b)
Experiment 2; (c) Experiment 3.

10, 30, 50, 70, and 90 were tested to carry out the sensi-
tivity analysis on the impact of assimilating different sources
of streamflow observations to the improvement of modeled
streamflow. In the sensitivity analysis for the three experiments,
NSCE was taken as the evaluation metric.
Fig. 5(a), which shows the sensitivity analysis results for ex-

periment 1, indicates increasing the observation error leads to a
decrease in the accuracy of the modeled streamflow, which cor-
responds to the conclusion in [27]. From the sensitivity plot, it
appears a value of 5% is an appropriate assumption describing
the observation error. As the observation error goes up from

5% to 20%, the NSCE decreases (see from the vertical direction
from Fig. 5(a)). It may go down below 5% for a better NSCE
value, but actually the NSCE does not changemuch when obser-
vation error goes below 10%, which indicates the model perfor-
mance is not sensitive when the observation error is smaller than
10%. In addition, based on previous experiences from USGS
(U.S. Geological Survey), the error of streamflow that is from
the gauge observation is usually around 8% [52] which is within
the reasonable observation error range: 5%-10%. Due to the de-
ficiencies within the simple structure of HyMOD, a larger back-
ground covariance was generated thus making the results much
more dependent on the observation. In other words, during the
assimilation procedure when the observation error is assumed
to be smaller, the Kalman gain is increasing, which makes more
corrections from the first guess to the observations. Based on
the previous experience form USGS, in this case, for the time
series assimilation experiment, 8% is assumed as the observa-
tion error for experiment 1 to produce the result in Fig. 6(a).
Regarding the ensemble size, the NSCE increases when the en-
semble size is enlarged from 10 to 50. However, when the en-
semble size is further increased from 50 to 90, it does not lead
to a further improvement in NSCE, which means the ensemble
size of 50 members was large enough to produce the optimal
modeling results. In addition, increasing the spread of precipita-
tion also contributes to the improvement of the modeling result.
By increasing the spread of precipitation from 10% to 170% the
modeled streamflow becomes more and more accurate (NSCE
becomes closer to 1); however, increasing the spread beyond
the value 170% results in no further improvement in the NSCE
values.
For experiments 2 and 3, similar sensitivity tests were con-

ducted and are shown in Fig. 5(b) and (c). Regarding the ob-
servation error, since the remotely-sensed AMSR-E signal con-
verted streamflow shows an overestimate during the low-flow,
dry seasons (Fig. 4), a relatively larger observation error of 10%
(compared to ground gauge-based streamflow observation error
of 8% in experiment 1) is assumed. These results are shown for
experiments 2 and 3 in Fig. 6(b) and (c) respectively, both of
which assimilate the AMSR-E observations. The optimal en-
semble size for experiment 2 and 3 is the same as experiment
1. When fixing the ensemble size to 50 members, the simulated
discharge skill reaches maximum values when the spread of pre-
cipitation approaches around 140% for both experiment 2 and
experiment 3.
Of all the three factors potentially impacting data assimilation

efficiency, ensemble size was the least sensitive while the spread
of precipitation was the most sensitive. The sensitivity analysis
shows that the error in the remotely-sensed precipitation esti-
mates was around 140% to 170%. As mentioned in the intro-
duction, studies show that the TRMM RT precipitation product
can lead to bias and random errors that propagate into hydro-
logic modeling outputs. For hydrological forecasting, the error
usually comes from a combination of uncertainties in the input
data (TRMM RT and PET in this study), the model structure,
and the initial conditions. In this study, the model structural er-
rors were not quantified so that the inability of the model to gen-
erate accurate streamflow was translated into the input forcing
data uncertainty. In other words, a larger spread of precipitation
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is selected in this study to compensate for the modeling error in
this case.

B. Calibration Analysis

As shown in Fig. 6, model calibration results are quite similar
to one another, even when the gauge streamflow observation
(experiment 1 & 2) or AMSR-E signal converted stream-
flow (experiment 3) was applied for calibration. When model
parameters are adjusted using gauge-observed streamflow
(experiments 1 and 2), the value of Bias, RMSE and NSCE
are , 68.33% and 0.61, respectively. When the model
parameters are adjusted using the AMSR-E signal converted
streamflow (experiment 3), the value of Bias, RMSE and NSCE
are , 75.78% and 0.61, respectively. The striking simi-
larity of the calibration results using different streamflow data
sources is a result of high consistency between the signal-con-
verted streamflow and the gauge-observed streamflow. As
shown in Fig. 4, the signal-converted streamflow matches quite
well with the gauge observation especially during high flow
periods. Moreover, the statistic used to compare the simulations
and observations, NSCE, is much more sensitive to high flows
compared to low flows. However, it is noted that because of
the insensitivity of the AMSR-E sensor to low flows, there is
significant overestimation of the signal-converted streamflow
for dry periods. The apparent capability to use the AMSR-E
signal to calibrate a hydrologic model while achieving nearly
the same degree of high skill as using in-situ gauge observa-
tions highlights its great potential to be used in tandem with
remotely-sensed precipitation data and PET for providing
real-time flood detection and forecasts in sparsely gauged or
ungauged basins.

C. Impact of Data Assimilation

1) Impact of Data Assimilation During Calibration Period:
EnSRF is used to assimilate different sources of streamflow ob-
servations into the hydrological model and to estimate all the
internal states, thus potentially improving the model outputs of
discharge. In order to make the results comparable among those
three experiments, the same ensemble size (50) and spread of
precipitation (150%) were assumed during the implementation
of the assimilation procedures into HyMOD. Since the observa-
tion error of the AMSR-E signal converted streamflow shows
significant overestimation during low flows, a larger observa-
tion error of 10% (in experiment 2 & 3) was assumed while 8%
was assumed with the gauge observation error (in experiment
1). The precipitation forcing was perturbed by adding Gaussian
white noise through multiplying the TRMM RT daily data by
a multiplier of which the mean is 1.0 and the standard devia-
tion is 150%. If negative values appear during the random mul-
tiplier generating, the code will automatically re-conduct the
Gaussian distributed multiplier generation until they are all pos-
itive values.
Overall, Fig. 6 shows the streamflow “Open Loop” ensem-

bles (grey lines), data “Assimilation” ensembles (yellow lines),
Open Loop Ensemble Mean (green dash line), Assimilation En-
semble Mean (red dash line), Open Loop deterministic model
run (blue dash line), gauge observation (dark solid line), and
signal converted streamflow (magenta dash-dot line). Compared

to streamflow ensembles before data assimilation (grey lines),
the streamflow ensemble spread after data assimilation (yellow
lines) is much reduced, and the ensemble mean after the assimi-
lation is also much closer to the observations. This result reflects
the effectiveness of the EnSRF. Compared with the determin-
istic Open Loop run, which is the modeled streamflow driven
by the original TRMM RT precipitation data without perturba-
tion, the Open Loop ensemble mean is overestimated due to the
discard of negative values during the precipitation perturbation
procedure as mentioned in the end of last paragraph.
For the assimilation module, the statistical evaluation ex-

cludes the first three month for both calibration and validation
period due to the bad first guesses at the beginning of each pe-
riod; in order to make a “fair” comparison between Open-Loop
and Assimilation, for Open Loop module, statistics were also
calculated excluding the first three months of each period.
Experiment 1 is the benchmark for the experiments as it repre-
sents a traditional calibration using rainfall and gauged runoff
observations while including a streamflow data assimilation
step. Fig. 6(a) shows the impact of the assimilation procedure
on the modeled streamflow in the benchmark experiment 1. By
assimilating the gauge-based streamflow observation into the
gauge-calibrated HyMOD, the Bias is improved from
to , RMSE reduces from 68.33% to 29.50%, while
NSCE goes up from 0.61 to 0.91. These statistical results all
indicate significant improvement in the modeled streamflow
following the assimilation of gauge-based streamflow during
the calibration period from 2003 to 2005.
In the second and third experiments, the effectiveness of as-

similating AMSR-E signal converted streamflow into HyMOD,
conditioned on calibrations from different streamflow sources
was assessed. In the second experiment, the model was cali-
brated by gauge streamflow and then the AMSR-E signal con-
verted to streamflow was assimilated into HyMOD. In the third
experiment, the AMSR-E signal converted to streamflow was
used as the source for both model calibration and assimilation.
Similar results were obtained in experiments 2 and 3 compared
to the first experiment. Specifically, after the EnSRF data assim-
ilation technique was applied, values of RMSE dropped while
NSCE rose. This justifies its use for improving discharge simu-
lations.
Furthermore, in order to further evaluate the potential ad-

vantage of using data assimilation approach, ensemble spread
before (blue solid line) and after (red solid line) data assimila-
tion and the absolute error between modeled streamflow and ob-
served streamflow for bothOpen Loopmodule (blue dotted line)
and Assimilation module (red dotted line) were plotted in Fig. 7.
As expected, the ensemble spread is greatly reduced using the
EnSRF relative to the Open-Loop, and the absolute error is also
reduced after applying the EnSRF compared to the Open-Loop,
especially during the validation period.
2) Impact of Data Assimilation During Validation Period:

During the validation period from 2006 to 2007, the modeling
performance without streamflow assimilation has deteriorated
at a significant level compared to the calibration period in terms
of Bias, RMSE and NSCE in all three experiments as shown in
the tables located in the lower panels in Fig. 6(a), (b), and (c),
respectively. Both the simplicity of the model structure and the
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inter-annual uncertainties in the remotely-sensed TRMM RT
precipitation contribute to this deterioration.
However, the application of EnSRF to assimilate different

sources of streamflow observation improves the 1-day stream-
flow prediction. All the experiments’ modeling results have
been remarkably enhanced for the “Assimilation” component
compared to the “Open Loop” during the validation period. In
comparing the statistics in the three experiments, experiment 2
reveals a slight degradation in all three scores in comparison to
the benchmark in the first experiment. Nonetheless, the degra-
dation isn’t significant indicating the potential application of
assimilating the AMSR-E signal even into a hydrologic model
that has been previously calibrated from gauge observations.
As expected, the best statistical results were associated to
experiment 1. Experiment 3, which was based on calibration
and assimilation using the AMSR-E signal alone, outperformed
experiment 2 and has competitive results to experiment 1 as
well. The comparable modeling performance of experiment 3
compared to experiment 1 clearly highlights the potential of
using the remote-sensing data as a proxy for streamflow with
application for flood early warning in sparsely-gauged or un-
gauged basins. The above results demonstrate that even using
a simple hydrological model, when coupled with the EnSRF
data assimilation approach, together with large perturbations of
precipitation to compensate for the model structural deficien-
cies, a satisfactory modeling performance can be produced for
streamflow forecasting. Further evaluations based on extreme
events are conducted in the next section.

D. Threshold-Based Evaluation and Analysis

As shown in Fig. 8, a threshold for high flow is calculated by
ranking the daily streamflow data from 1946 to 2005 (50 years)
at the Rundu gauge station from highest to lowest. The discharge
corresponding to the top 10% daily streamflow quantile, with a
value of 402 , is identified as the high flow threshold.
POD, FAR, CSI and ETS were calculated to further evaluate

the filter’s performance focused on the detection-capability of
the top 10% daily streamflow quantile for the three experiments
as before. Fig. 9 indicates that after data assimilation, POD,
CSI and ETS increase while FAR decreases for all experiments
during both calibration (left panel in Fig. 9) and validation (right
panel in Fig. 9) period experiments except for the POD in the
validation period. The POD values without data assimilation are
equal to one for the reason that the modeled streamflow is sig-
nificantly overestimated during the validation period (as shown
in Fig. 6) with all “hits” and no “misses”. Nonetheless, the major
improvements of POD, FAR, CSI and ETS during both the cal-
ibration and validation period highlight the efficiency of high
flow detection following data assimilation. These categorical
verification statistics together with Bias, RMSE, and NSCE in-
dicate that the impact of the data assimilation procedure to the
modeled streamflow is beneficial, especially for improving the
model simulation skill during flood events mainly due to the fact
that the AMSR-E sensor is quite sensitive to high flow events.
During these flooding cases the difference between the bright-
ness temperature for the calibration pixel and the measurement
pixel is more acute due to the expansion of the river’s surface
area.

For experiment 3, which fully depends on the remote-sensing
inputs and highlights the potential of flood prediction in un-
gauged basins, POD, CSI, and ETS showed improvements after
implementing the data assimilation approach during the high
flow period. Compared with experiment 1 during the calibration
period, all the categorical verification statistics show improve-
ments to POD, FAR, CSI, and ETS following data assimilation.
When it comes to the validation period, the flood detection ca-
pability of experiment 3 is better than experiment 2, but slightly
degraded yet comparable to experiment 1, which indicates the
AMSR-E signal converted to streamflow was apparently well
adapted to the model. These experiments highlight the poten-
tial use of the AMSR-E signal for streamflow prediction during
flooding seasons, especially in ungauged basins.

V. CONCLUSION

Though data scarcity remains a big challenge in hydrologic
modeling, remote-sensing data provide a promising perspective
on advancements in this research area. In addition, data assim-
ilation techniques incorporate the uncertainties from both the
input data and initial conditions and also have the potential to
enhance modeling performance. In this study, the deterministic
Ensemble Kalman Filter – Ensemble Square Root Filter was
coupled with a widely used conceptual rainfall-runoff model to
assimilate streamflow data from either in-situ or remote sensing
sources to update all the internal states in the model, thus pro-
viding the potential to improve modeling results. The following
conclusions are reached in this study:
(1) AMSR-E brightness temperature signals can be suc-

cessfully used to estimate streamflow, highly consistent
with the in-situ observation. In particular, the signal
converted to streamflow matches well with the obser-
vation over relatively high flow periods due to its high
sensitivity to land surface wetness.

(2) The traditional model calibration technique is subject
to uncertainties in the data, parameters, internal states
and model structure. The general poor performance of
the calibrated model can be attributed to the weakness
of traditional calibration techniques that are normally
constrained or limited from the inaccuracy of input re-
mote sensing precipitation data and the simplification of
the model structure. Data assimilation can account for
both the uncertainties in the input data and the model
structure by updating the internal model states, so it is a
promising tool in improving hydrological modeling per-
formance, especially for applications of real-time fore-
casts for decision-makers.

(3) The modeling results have been found to be insensitive
to the ensemble size since the model used is a lumped
model and there are only a total of five internal states
in this conceptual rainfall-runoff model. In contrast, the
spread of the precipitation is more sensitive to the im-
provements of the modeled streamflow.

(4) The three experiments show that through the assimila-
tion of either the gauged streamflow or the AMSR-E
signal converted to streamflow into the hydrological
model by EnSRF, the difference between the stream-
flow simulation and observation can be reduced. This
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demonstrates that EnSRF is effective and efficient in
improving modeling performance by assimilating dif-
ferent sources of high-quality streamflow data. The first
experiment is the benchmark to verify the feasibility
and effectiveness of the data assimilation approach. The
second experiment proves the modeling improvement
via assimilating a different source of streamflow (i.e.,
satellite-based streamflow) into a hydrological model
that was calibrated by the in-situ streamflow observa-
tions. In the third experiment, the AMSR-E streamflow
signals were used first to calibrate the model and then
assimilated into the model without in-situ streamflow
data, thus demonstrating the potential usefulness of
the AMSR-E signal data to benchmark and improve
hydrological predictions in ungauged or undergauged
basins.

(5) When taking the corresponding value to the upper 10th
percentile of daily streamflow observations for the re-
cent 50 years as the high flow threshold, the assimilation
of both gauge-based streamflow and AMSR-E signal
converted to streamflow into HyMODnot only increases
POD, CSI, and ETS but also decreases FAR, thus further
improving the modeling results for flood forecasting in
the Cubango river basin.

(6) Previous studies on hydrological data assimilation com-
monly take the traditional observation as assimilation
data sources, i.e., gauge-observed soil moisture [22],
[26] and observed streamflow [22], [27], [28]. Bene-
fitting from remote-sensing techniques, recent studies
incorporated remotely sensed soil moisture as assim-
ilation sources to improve the discharge prediction
[21], [23]–[25]. So far, no remotely sensed streamflow
information has been applied for hydrological data
assimilation. As mentioned in [42], currently, river
discharge cannot be directly measured by satellite sen-
sors. However, passive microwave sensors – AMSR-E
together with TRMM TMI have been used to detect
river discharge changes, and those information can be
converted into streamflow by using the algorithm men-
tioned in [31]. This study is the “first attempt” to exploit
and demonstrate the applicability of assimilating space-
borne passive microwave streamflow signals to improve
flood prediction in the sparsely gauged Cubango River
basin in Africa. Compared to the closest previous pub-
lication Khan et al. [50] which has also investigated the
applicability of the AMSR-E signals in hydrological
modeling in the same research region, this study used
a simple yet robust model and conducted competitive
results. A data assimilation technique is used in this
study in addition to the traditional calibration compared
to Khan et al. [50]. Ensemble streamflow simulations
are generated and then the ensemble mean is calculated
as the final output to represent the streamflow simu-
lation; When combined with EnSRF data assimilation
approach HyMOD has similar results compared to a
complex, distributed CREST hydrologic model.

In closing, this study is the “first attempt” to exploit and
demonstrate the applicability of assimilating spaceborne

AMSR-E streamflow signals to improve flood prediction in
the Cubango River basin. It also shows that opportunities and
challenges exist for an integrated application of a suite of satel-
lite data to flood prediction by careful fusion of remote sensing
and in-situ observations and further effective assimilation of
the information into a hydrological model. Given the global
availability of satellite-based precipitation and AMSR-E signal
information in near real-time, we argue that this work will also
contribute to the decadal initiative of Prediction in Ungauged
Basins: a paradigm shift in the streamflow prediction methods
away from traditional methods reliant on statistical analysis and
calibrated models, and towards new techniques and new kind
of observations, particularly imperative for the vast ungauged
or undergauged basins around the world. More promising,
data assimilation of remote sensing information for improving
hydrological prediction can be increasingly appreciated and
supported by the current TRMM and future GPM (Global Pre-
cipitation Mission, to be launched in July 2013) together with
the current Aqua/AMSR-E and future SMAP (Soil Moisture
Active and Passive, to be launched in 2014). Both the new
missions are anticipated to provide better precipitation and soil
moisture data in terms of coverage, accuracy, and resolutions.

APPENDIX

Table III shows the contingency table for streamflow simu-
lation and ground gauge observation comparisons. For the case
that both the streamflow simulation and ground gauge obser-
vation are higher than a certain threshold, it is “hit”; for the
case that the streamflow simulation is lower than the certain
threshold when ground gauge observation is higher than the
same threshold, it is “miss”; for the case that the streamflow
simulation is higher than the certain threshold but mean while
ground gauge observation is lower than the same threshold, it
is “false alarm”; for the case that both the streamflow simula-
tion and ground gauge observation are lower than the certain
threshold, it is “Correct Rejection”. The desirable values for
POD, FAR, CSI and ETS are 1, 0, 1 and 1, respectively.
Probability of Detection measures the fraction of observed

events that exceeded the top 10% daily streamflow quantile that
were correctly simulated:

(A1)

False Alarm Ratio calculates the fraction of simulated events
that exceeded the top 10% daily streamflow quantile that were
not observed:

(A2)

The Critical Success Index, which is also called Threat score,
gives the overall fraction of correctly detected events that ex-
ceeded the top 10% daily streamflow quantile:

(A3)

The Equitable Threat Score, which describes how well the
simulated “yes” events are corresponding to the observed “yes”
events that exceeded the top 10% daily streamflow quantile:
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Fig. 7. Time series error analysis for Experiment 1 (Fig. 7(a)), Experiment 2 (Fig. 7(b)) and Experiment 3 (Fig. 7(c)). The left panels are corresponding to cal-
ibration period, the right panels are corresponding to validation period. The blue and red solid lines are the ensemble standard deviation for Open Loop module
and Assimilation module respectively. The blue and red dash lines are the absolute error between the model simulated streamflow and the observed streamflow.
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Fig. 9. Statistics (POD, FAR, CSI, ETS) plot during high flow.

TABLE III
CONTINGENCY SIMULATED STEAMFLOW (BEFORE AND AFTER) DATA ASSIMILATION APPLIED AND GROUND GAUGE OBSERVED STREAMFLOW.

Fig. 8. Identification of high flow threshold.
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